
LEARNING FROM IOS 
ANIMATIONS

Justin Miller • Mapbox

🤔



The animation foundations in iOS are well-
designed, intuitive, and powerful. 

What can we learn about how they are built, the 
capabilities that they give, and the assumptions 

that they are built upon, that we can bring to our 
own software design?



PERSONAL INTRO

• I’ve been programming for work for 20 years & have been 
using Apple technologies for 15 of those

• Perl, PHP, Objective-C, C, C++, Java, Swift (also Bash)

• I’ve been both an app builder and a tool builder

• I have always admired Apple's API design



MAPBOX INTRO

• We’re building developer tools for maps & location

• Customized map appearance & function

• We recently added “runtime styling”

• I have had to think a lot lately about animations















WHAT ARE ANIMATIONS?





MR. BOJANGLES

Bill “Bojangles” Robinson, 1878-1949



MR. BOJANGLES

• Probably the first programming that I can remember

• Intro to animation for the TI-99/4A computer (1979)

• Absolute simplest possible animation

• Two frames swapped in time, coincident in position















ANIMATIONS ARE COMMUNICATION

• Hello, friends!

• Merhaba, arkadaşlar!

• We can tell the user with text

• Or we can show the user with animation Row 5

Row 4

Row 3

Row 2

New 
Row!

Row 1



ANIMATIONS ARE COMMUNICATION

• Hello, friends!

• Merhaba, arkadaşlar!

• We can tell the user with text

• Or we can show the user with animation

Row 4

Row 3

Row 2

New 
Row!Row 5

Row 1



IOS ANIMATION PLATFORM

• iOS has very high animation performance and an 
obsession with 60FPS

• Mature animation API which debuted for macOS 
(OS X) and was there from the start for iOS



IOS ANIMATIONS ARE PERVASIVE

• You might not even notice many places that they 
happen

• But they are used through the base OS to give a 
sense of place, context, and movement



APP NAVIGATION



APP NAVIGATION



INDICATING MOTION OR ACTIVITY



INDICATING MOTION OR ACTIVITY



SOFTENING ROUTINES



SOFTENING ROUTINES



SOFTENING ROUTINES



SOFTENING ROUTINES



SOFTENING ROUTINES



CORE ANIMATION

• Introduced in OS X 10.5 (“Leopard”, 2007) via 
(then-secret) iPhone team

• Implicit animation model

• Don't have to build animation objects

• Interpolation is handled automatically



LET'S SEE HOW IT WORKS
• Visual building block (the view) exists on screen

• A view can contain anything

• Views are backed by layers, which are their bitmap 
representations—a sort of snapshot of their contents

• Core Animation animates layer property changes by 
default



FADE DEMO



FADE DEMO



THE CODE



THAT’S IT? 



LESSON #1: DISCOVERABILITY



ENHANCING DISCOVERABILITY

• Piggyback on things you are doing in nearby APIs 
(here, layer property changes)

• Consider opting in to a behavior by default



ENHANCING DISCOVERABILITY

• Build SDKs?

• Database initial data

• View default 
background color

• First run demo

• Build apps? 

• Default populated 
data

• Partially-hidden 
content to 
encourage gestures



SLOPES

getslopes.com

http://getslopes.com














THERE IS A LOT MORE! 

• Explicit animations

• Complex animation 
building blocks

• Keyframe animations

• Custom properties

• Per-property runtime 
checks for actions

• Replicated layers

• Nested transactions

• Transitions between 
views and layers



LESSON #2: FLEXIBILITY



FLEXIBILITY

• Allows for uses beyond the primary use case

• But doesn’t bog down the primary use case



EXPLICIT ANIMATIONS

• Instead of just setting property values, you 
construct animation objects

• Able to customize parameters on individual 
animations 



EXPLICIT ANIMATIONS



EXPLICIT ANIMATIONS



EXPLICIT ANIMATIONS



TRANSACTIONS

• Allow you to specify custom animation parameters

• Allow you to precisely control time, acceleration, 
and completion actions across multiple animations



TRANSACTION EXAMPLE



TRANSACTION EXAMPLE



TRANSACTION EXAMPLE



LESSON #3: MAKE IT INTUITIVE



TRANSACTION EXAMPLE 
REVISITED



GRADIENTS



GRADIENTS



MASKS



MASKS



GRADIENT & MASK COMBINED



GRADIENT & MASK COMBINED



LESSON #4: HIDE COMPLEXITY



HIDE COMPLEXITY

• We use .mask to set a mask

• We use .colors to set gradient colors

• Complexity of drawing and animating is hidden



SPRING ANIMATIONS



AS YOU MIGHT EXPECT…

• This is trivial in Core Animation

• Accomplished with CASpringAnimation

• Useful for more organic-feeling interfaces



SPRING ANIMATIONS



SPRING ANIMATIONS



SPRING ANIMATIONS



LESSON #5: MAKE IT FUN



FUN

• Core Animation has a playfulness to it

• This reflects the potential for playful interactions in 
your apps

• Admittedly, you don't have to dress up animations 
very much—it’s not an API like string encoding or 
task queuing



LESSON #6: MAKE IT UNSURPRISING



MAKE APIS UNSURPRISING

• Consider if the default implicit animation duration 
was zero seconds

• You wouldn’t be able to see animations, even 
though they were the default behavior!



–Principle of Least Astonishment (PoLA)

“If a necessary feature has a high 
astonishment factor, it may be necessary to 

redesign the feature.”



SURPRISING APIS

• Classic example: a list or array add() or 
insert() that sorts

• Consider what is least surprising to the user, rather 
than the expected behavior given knowledge of 
the inner workings



LESSON #7: EXTENSIBILITY



EXTENSIBLE

• Core Animation supports custom properties

• Not just the predefined ones like opacity & 
position



EXTENSIBLE



EXTENSIBLE



EXTENSIBLE



EXTENSIBLE



LESSON #8: DOCUMENT IT



DOCUMENTATION

• Not the most glamorous thing, but very important

• This is important even for your future self

• But especially important for other consumers

















RECAP

1. Discoverable

2. Flexible

3. Intuitive

4. Hide Complexity

5. Make it fun

6. Keep it unsurprising

7. Allow extensibility

8. Document it



THANK YOU! 

❤



Q&A

• Twitter : incanus77

• GitHub: incanus

• Web: justinmiller.io

• Mapbox: mapbox.com/blog

http://justinmiller.io
http://mapbox.com/blog

