
MOBILE VECTOR CARTOGRAPHY
Designing For Infinite Scale Factors • NACIS 2014
Justin Miller • Mapbox • @incanus77

I’m very glad to be here. Like Ken Kato, I’m here from Oregon, but also a Pittsburgh native! Thanks for having me. 



INTRODUCTION

Engineering-focused talk (though from a carto perspective)

Mapbox is building tools for designers & developers

Enabling more cartographers

Programming/design/combination

As much about what we’re building as what we’ve learned

This will be an engineering-heavy talk, relatively, but I hope it’s useful for cartographers. I’d like to share what goes into some of the tools we make for 
people making maps. 



THE JOURNEY SO FAR

Raster-based tile design with tools like TileMill

Deterministic (at least in principle)

Technically limiting for large geographic focus

Quantity of tiles (generally need 1:1 scale-to-tile layer parity)

Inability to change cartography on the fly

Limited situational flexibility (rotation, localization, animation)

We’re starting to move from design of tiles themselves, where the final, delivered product is rasterized imagery. 



THE JOURNEY (CONT’D)

Moving to vector-based style design with Mapbox Studio & GL

Goal: still deterministic design (again, in principle)

But offers new benefits

Lower number of tiles through overzooming of vector features

Ability to change style 60 times/second (FPS)

Rotation, label changes, interpolated style transitions all possible

We’re moving to style design, where styles and data tiles are compiled to be rendered on the server. I say “in principle” because for the worldwide base 
maps that we’re enabling, no one checks every corner of the globe. They need things to render predictably. 



VECTOR…?

Can refer to either or both sides of the stack

Vector data: point & polyline features essentially as data on a grid

However, can still be rasterized into tiles, then served

Vector rendering: live drawing of features on the client side

Every viewport change is an opportunity for re-render

We’re mostly talking about vector rendering here, by way of converting data into a portable, compact, pre-tiled vector data format. 



VECTOR RENDERING

Approaches: in software (e.g. SVG) or in hardware (e.g. OpenGL)

We went with OpenGL (hardware accelerated)

Based on a 22 year old API used for 3D visualizations & games

OpenGL ES (Embedded Systems) on mobile

Highly parallel & rapid processing of pixels on screen



OPENGL TRADEOFFS

Makes use of dedicated hardware (GPU)

Very good at its subset of capabilities

Drawing work is offloaded from the CPU

Freed up for other tasks like network & disk activity

But much more primitive & laborious (luckily, we do that part)

Bridges styling language to primitives like points & triangles



RASTER WORKFLOW

Data

DB
Shapefile
GeoJSON

…

Style

CartoCSS
Manual

…

Render
Raster Tiles

(Once)

Server
Client

Displays Tiles

+

A wall is put up between cartographic control and the mobile device where the map is shown and used. The styling step happens on the left side of this 
wall. 



RASTER WORKFLOW

Data

DB
Shapefile
GeoJSON

…

Style

CartoCSS
Manual

…

Render
Raster Tiles

(Once)

Server
Client

Displays Tiles

+

A wall is put up between cartographic control and the mobile device where the map is shown and used. The styling step happens on the left side of this 
wall. 



VECTOR WORKFLOW

Data

DB
Shapefile
GeoJSON

…

Style

Mapbox GL
Vector Tiles

Server
Client

Draws Features
(60x/sec)

+

With vector rendering, opportunities exist on the right side of that wall to continue to change and respond to context when styling the map. 



VECTOR WORKFLOW

Data

DB
Shapefile
GeoJSON

…

Style

Mapbox GL
Vector Tiles

Server
Client

Draws Features
(60x/sec)

+

With vector rendering, opportunities exist on the right side of that wall to continue to change and respond to context when styling the map. 



THE CIRCLE OF LIFE

Change position, zoom, 
rotation, and/or inputs

Reconsider style 
parameters

Apply style to data

Render map on screen

60x/second



INCREMENTAL ZOOM

There are now incremental zoom levels, where every minor gesture creates a slightly new map scale that can be rendered uniquely. 



ZOOM-DEPENDENT STYLING

In this example, line width is interpolated along a series of “stops” which describe pixel width against the current zoom level. 



ZOOM-DEPENDENT STYLING

In this example, line width is interpolated along a series of “stops” which describe pixel width against the current zoom level. 



ZOOM-DEPENDENT STYLING

In this example, line width is interpolated along a series of “stops” which describe pixel width against the current zoom level. 



ZOOMING LABEL COLLISION

K. Been, E. Daiches, and C. Yap. Dynamic map labeling., IEEE VGTC, Vol. 12, No. 5, 2006

Here we show how zooming label collision plays out. 



ZOOMING LABEL COLLISION

K. Been, E. Daiches, and C. Yap. Dynamic map labeling., IEEE VGTC, Vol. 12, No. 5, 2006

Here we show how zooming label collision plays out. 



ZOOMING LABEL COLLISION

K. Been, E. Daiches, and C. Yap. Dynamic map labeling., IEEE VGTC, Vol. 12, No. 5, 2006

Here we show how zooming label collision plays out. 



ROTATION LABEL COLLISION

A. Gemsa, M. Nöllenburg, and I. Rutter. Consistent labeling of rotated maps., arXiv:1104.5634, 2011

As well as rotation producing label collisions. 



ROTATION LABEL COLLISION

A. Gemsa, M. Nöllenburg, and I. Rutter. Consistent labeling of rotated maps., arXiv:1104.5634, 2011

As well as rotation producing label collisions. 



ROTATION LABEL COLLISION

A. Gemsa, M. Nöllenburg, and I. Rutter. Consistent labeling of rotated maps., arXiv:1104.5634, 2011

As well as rotation producing label collisions. 



LABEL COLLISION SITUATIONS

A. Gemsa, M. Nöllenburg, and I. Rutter. Consistent labeling of rotated maps., arXiv:1104.5634, 2011

We used some computer graphics research to determine how to solve this collisions and always render legible and useful labels. 



ZOOMING LABEL WRAP

We’ve even gotten labels to wrap at angles which depend on the curvature of the map. 



ZOOMING LABEL WRAP

We’ve even gotten labels to wrap at angles which depend on the curvature of the map. 



ZOOMING LABEL WRAP

We’ve even gotten labels to wrap at angles which depend on the curvature of the map. 



LABEL WRAP EXPOSED

Here’s a look behind the scenes of how that is done. 



LABEL WRAP EXPOSED

Here’s a look behind the scenes of how that is done. 



LABEL WRAP EXPOSED

Here’s a look behind the scenes of how that is done. 



Labels should render the same in Pittsburgh, which you’ve planned for, as in Bangalore, which you may not have tested. 



Labels should render the same in Pittsburgh, which you’ve planned for, as in Bangalore, which you may not have tested. 



Here’s a contrived example of smoothly transitioning between two similar but also very different styles, day and night modes for a map. These transitions 
can happen at 60 frames per second. 



Here’s a contrived example of smoothly transitioning between two similar but also very different styles, day and night modes for a map. These transitions 
can happen at 60 frames per second. 



Here’s a contrived example of smoothly transitioning between two similar but also very different styles, day and night modes for a map. These transitions 
can happen at 60 frames per second. 



Once you’ve got this foundation, even raster imagery can make use of it. Here is drone-collected aerial video imagery atop raster satellite tiles. 



CONCLUSION

We’re building tools for the heavy lifting of hardware acceleration

Combining pre-tiled vector data with flexible styling

Oriented towards a more fluid, responsive map experience

Hoping to create new potential for map design & interaction

Open source & designed with interoperability in mind



THANK YOU

justin@mapbox.com & @incanus77

mapbox.com/mapbox-gl

mapbox.com/blog

github.com/mapbox


