
Unlocking High
Performance Maps
With Mapbox Studio and Mapbox Vector Tiles

Justin Miller • Mapbox

Personal Introduction
• Work at Mapbox since 2010

• Mostly do mobile SDK development

• Have help build large parts of GL native/mobile

• Have seen where Mapbox has been and what
we have learned from the past

• Based in USA

Agenda

• Why vector tiles?

• How do we style them?

• How do we make them?

• Hands-on time

Considerations

• mapbox.cn is still being built

• Current Mapbox Studio performance in China

• Limits of my expertise (software development
rather than GIS, data, or cartography)

• Limited time today

http://mapbox.cn

Assumptions
• Mercator projection

• Square Earth, polar distortion

• Tiling

• Doubling of map scale replaces each tile by
four tiles of higher resolution

• OpenGL compatibility (WebGL and OpenGL ES)

Why Vector Tiles?

 “Slippy” Map Tiles

• Pioneered by Google Maps in 2005

• “Pyramid” structure for levels of detail

• Originally designed for raster imagery

• But also works great for vector tile data

z13

z14

z15

Vector Tiles
• Replacement of source data (SHP, KML,

GeoJSON, PostGIS, etc.) with grid representation

• “Vector” refers to geometry, not actual vector
math such as Bezier curves

• Rendered as primitives (lines, polygons, and
symbols like icons or font characters)

• Rendered using the Mapbox GL standard

4096 points

4096
points

Allows Vector Rendering

• Rendering happens on the client

• Drawing happens at 60 FPS (instant refresh)

• Makes possible animations and transitions

Rendering Advantages
• Client-side, so performant and customizable

• Allows for advanced features

• Always-upright text

• Quickly change styling

• Zoom functions (style value as function of zoom level)

• Property functions (style value as function of property
value)

How Do We Style Them?

Layout & Paint Properties
• Layout: earlier in render process, can be shared

between layers using ref property

• Examples: line-cap, line-join,
visibility

• Paint: later in render process

• Examples: line-opacity, line-color,
line-width

Constant Values

• Simple equality to numbers, strings, booleans,
colors, etc.

• Fixed for every zoom level

• “circle-radius”: 10

Function Values (Variable)
{
 "circle-radius": {

 "stops": [

 // zoom is 5 -> circle radius will be 1px
 [5, 1],

 // zoom is 10 -> circle radius will be 2px
 [10, 2]

]

 }

}

Function Values

• Discrete values for layout properties

• Like previous circle-radius example

• Interpolated values for paint properties

• Example: opacity constantly changes with
zoom, every fractional zoom

mapbox.com/blog/3d-features-in-mapbox-gl-js/

http://mapbox.com/blog/3d-features-in-mapbox-gl-js/

mapbox.com/blog/3d-features-in-mapbox-gl-js/

http://mapbox.com/blog/3d-features-in-mapbox-gl-js/

mapbox.com/blog/3d-features-in-mapbox-gl-js/

http://mapbox.com/blog/3d-features-in-mapbox-gl-js/

Ecosystem
• Tile creation (Studio, Mapnik, Tippecanoe)

• Tile hosting (HTTP assets)

• Styling (Studio)

• Style/font/icon hosting (HTTP assets)

• GL rendering

• Web (WebGL clients such as Mapbox GL JS)

• Mobile (native clients such as mobile SDKs)

Browser

Mobile

Tiles

Styles

H
T
T
P

Data Transport Render

How Do We Make Them?

4096 points

4096
points

Simplify Shapes
• Reduce number of points in lines & polygons

• Reduce duplicate single points to one point

• Used where difference isn’t noticeable in
rendering

• Allows for even more data size reduction

• Original shapes are lost permanently

Simplify Shapes

Simplify Shapes

Binary Format

• Able to be compressed more easily

• Able to be parsed faster by code

• Not necessary to be human-readable

• Uses Google Protocol Buffers (PBF) for storage

Delta Encoding
• Happens after projection into 4096 point tile

• Only store differences (deltas) between
coordinates

• Line from (64, 438) → (124, 447)

• Encoded as (60,9)

• Each tile stores one starting point plus many
deltas per feature

Feature Property Querying
• Source data properties are retained

• Example: name, building number, POI details

• Unique property names and values are stored
only once and correlated to features

• Saves even more text and numeric space

• Able to be retrieved by client during queries

mapbox.com/blog/population-inspector/

http://mapbox.com/blog/population-inspector/

Automatic Process

• Mapbox Studio’s feature for creating “tilesets” is
automatic

• Intelligent choices (compromises) are made

• Easiest for web-based uploading of data

• But can be done externally with other tools

More Custom Tools

• Mapnik backend (used by Studio)

• Tippecanoe (command-line tool with total
control)

• JavaScript & Python libraries

Tile Uploading & Transport

• MBTiles format is most efficient

• SQLite disk-based database of tile data

• Database key: x/y/z triad

• Data value: PBF vector tile data

• Easily capable of 10s of GB

Hands-On Time

Studio Overview
• Data sources (tilesets)

• Style layers

• Creates a (hosted) style file

• Creates (hosted) assets like fonts & icons

• Allows for easy mobile & HTML integration with a
“style URL”

Thank You!

• mapbox.com/blog

• Twitter: incanus77

• WeChat: incanus77

• Email: justin@mapbox.com

http://mapbox.com/blog
mailto:justin@mapbox.com

